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ABSTRACT

An analysis of the reliability of using dropsonde profile data to compute surface flux coefficients of mo-
mentum and heat is performed. Monin–Obukhov (MO) similarity theory forms the basis for the flux profile
method, where mean profiles of momentum, temperature, and moisture are used to estimate surface fluxes,
from which bulk flux coefficients can then be determined given surface conditions. The robustness of this
method is studied in terms of its sensitivity to internal, method-based parameters, as well as the uncertainty
due to variability in the measurements and errors in the estimates of surface conditions, particularly sea
surface temperature. In addition, ‘‘virtual sondes’’ tracked through a high-resolution large-eddy simulation of
an idealized tropical cyclone are used to evaluate the flux profile method’s ability to recover known surface
flux coefficients given known, prescribed surface conditions; this provides a test of whether or not MO as-
sumptions are violated and under which regions they hold. Overall, it is determined that the flux profile
method is only accurate within 50% and 200% for the drag coefficient CD and enthalpy flux coefficient CK,
respectively, and thus is limited in its ability to quantitatively refine model estimates beyond typically used
values. Factors such as proximity to the storm center can cause significant errors in both CD and CK.

1. Introduction

The specification of bulk flux coefficients in high winds
over the ocean has been the subject of much debate in
the past two decades. These coefficients, which ultimately
determine the surface fluxes of momentum, heat, mois-
ture, and other scalars, are a highly idealized represen-
tation of surface transport and are typically cast as
functions only of near-surface (typically 10m) wind
speed. At low wind speeds (less than, say, 20m s21),
the general behavior of these transfer coefficients is well
predicted by bulk parameterizations such as the COARE
algorithm (Fairall et al. 2003; Edson et al. 2013); in high
winds, particularly within tropical cyclones, however,
large degrees of observational uncertainty preclude any

consensus on their specific behavior. For instance, be-
ginning with the efforts of Powell et al. (2003), it is now
generally believed that the drag coefficient CD either
saturates or peaks in high winds, but many details of this
saturation process, including the exact ‘‘roll off’’ wind
speed or the ultimate physical cause of this plateau, remain
unknown. Furthermore, it is becoming increasingly clear
that CD is a function of other factors, particularly wave
properties, which can cause modifications of near-surface
atmospheric turbulence, leading to a systematic spread in
the CD versus wind speed formulation (Holthuijsen et al.
2012; Takagaki et al. 2012; Reichl et al. 2014; Sullivan
and McWilliams 2010).
While many studies attempt to measure the drag co-

efficient at high winds (Powell et al. 2003; Jarosz et al.
2007; Troitskaya et al. 2012; Vickers et al. 2013; French
et al. 2007; Donelan et al. 2004; Potter et al. 2015), far
fewer attempt to measure or constrain the thermody-
namic flux coefficients. The Humidity Exchange Over
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the Sea (HEXOS) program (DeCosmo et al. 1996)
measured sensible and latent heat fluxes using eddy
covariance from a fixed platform in the North Sea and
found no statistically significant trend, albeit with ex-
pected observational data scatter, of either the sensible
heat flux coefficient CH or the water vapor exchange
coefficient CE with wind speeds up to roughly 20ms21.
From these measurements they hypothesize that the
influence of waves and/or spray is either nonexistent or
compensated in some way to yield unchanged flux
coefficients.
The high-wind component of the Coupled Boundary

Layer Air–Sea Transfer (CBLAST) campaign produced
direct, eddy covariance sensible and latent heat flux
measurements made from aircraft flown through the
boundary layers of Hurricanes Fabian and Isabel in 2003
and found an extended range of insensitivity of CH and
CE to wind speed out to nearly 30m s21 (Zhang et al.
2008; Drennan et al. 2007). For these measurements, sea
surface temperatures (SSTs) were estimated by a
downward-looking infrared radiometer (Black et al.
2007) so that surface temperature and moisture condi-
tions could be used to compute the flux coefficients. By
summing the sensible and latent heat fluxes, the total
moist enthalpy flux coefficient CK is also found to re-
main statistically constant up to 30ms21 (Zhang et al.
2008). Furthermore, from other components of the
CBLAST data (i.e., not just eddy covariance measure-
ments, but including radar, flight-level, and microwave
radiometer data as well), Bell et al. (2012) constructed
azimuthally averaged energy and angular momentum
budgets to estimate the surface fluxes of momentum and
enthalpy in regions where direct measurements are un-
available and concluded that CK, within a large degree
of uncertainty, remains in the same range as previous
estimates, even beyond wind speeds of 70m s21.
In the laboratory, attempts to measure air–sea energy

transfer have been performed for many years (Mangarella
et al. 1973), but only recently have high-wind conditions
been successfully achieved. Haus et al. (2010) and Jeong
et al. (2012) usedwater-side energy budgets to solve for the
air–water moist enthalpy flux and found once again that
the values ofCK are relatively unchanged up to 10-m wind
speeds of roughly 40ms21. While the measurement un-
certainties of this dataset aremuch better constrained than
the observationally based estimates of CK, questions re-
main regarding practical laboratory limitations on factors
such as wave age, wave height, spray, and fetch.
The importance of the flux coefficients CD and CK,

and more generally of the relative balance between
energy dissipation through drag and energy input
through sensible and latent heat at the air–sea interface,
has long been recognized as a key factor for accurately

predicting tropical cyclone development and intensity
(Rosenthal 1971). The theoretical/numerical work of
Emanuel (1986) and Emanuel (1995) predicts that the
storm intensity will vary as the square root of the ratio
between CK and CD, based on axisymmetric thermo-
dynamic budgets of a steady-state system. Other studies
have shown the direct, substantial influences of varying
surface flux coefficients in numerical predictions of
tropical cyclone development, structure, and strength
(Montgomery et al. 2010; Bryan 2013, 2012; Green and
Zhang 2013; Bao et al. 2011). Generally speaking, in-
creases in CK lead to overall increases in storm strength,
while increases to CD may nominally decrease storm
strength (as defined by the maximum 10-m wind speed),
albeit through more complicated alterations to the
pressure-gradient wind balance and near-surface inflow.
Other studies actually exploit the sensitivity of storm
structure to surface flux coefficients to estimate the
‘‘best’’ values of CD or CK using parameter estimation
procedures (Sraj et al. 2013; Green and Zhang 2014;
Rios-Berrios et al. 2014).
Meanwhile, it is well recognized that these transfer

coefficients are meant to represent myriad small-scale
processes in some sort of bulk sense. Therefore many
attempts have been made to predict high-wind fluxes of
momentum, heat, and moisture based on parameterized
considerations of processes such as waves (Kudryavtsev
and Makin 2007; Troitskaya et al. 2012; Reichl et al.
2014) or spray (Mueller and Veron 2014; Makin 2005;
Fairall et al. 1994; Andreas 2004, 2010; Veron 2015).
Unfortunately, however, these often-intricate models
are difficult to verify because of the practical difficulties
associated with making small-scale, in situ measure-
ments of quantities such as spray generation functions or
high-wavenumber surface wave spectra. Moreover, in
certain cases, appealingly sound theoretical arguments
seem at odds with uncertain measurements, which
highlights the need for continuous improvement of both.
For instance, surface enthalpy flux models that account
for spray, including those of Andreas (2011), Mueller
andVeron (2014), and Bao et al. (2011), indicate thatCK

may undergo a systematic increase with wind speeds
exceeding 30ms21, which is seemingly at odds with the
observations mentioned above. The observations, how-
ever, are highly uncertain at high winds and cannot
conclusively rule out the predicted model behavior.
It is this continued limited understanding of air–sea

thermodynamic fluxes at high winds that motivates the
current work. In a previous study, Richter and Stern
(2014) show that mean profiles of temperature and
moisture obtained from dropsondes launched within
tropical cyclones can be used to construct mean enthalpy
profiles that are fitted to estimate surface enthalpy fluxes
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[using Monin–Obukhov (MO) similarity theory—herein
referred to as the flux profile method]. The work of
Richter and Stern (2014) specifically focuses on the evi-
dence of spray-mediated enthalpy fluxes containedwithin
these profiles. Rather than focusing on the behavior of
the flux coefficient CK, power-law scaling exponents of
the dimensional enthalpy fluxHK versus wind speed were
used to distinguish between laboratory cases, where so-
called interfacial fluxes were dominant over spray-mediated
enthalpy fluxes and field observations.
The current study aims to quantify the general utility

and accuracy of the flux profile method in the context of
tropical cyclone winds. The flux profile method is the
basis for the study of Powell et al. (2003), which pro-
vided the first observational evidence that CD saturates
at high winds. The work of Holthuijsen et al. (2012) is
also based on the flux profile method, where the quad-
rant dependence ofCDwas used to infer wave influences
on surface momentum fluxes. While each of these
studies used profiles obtained from dropsondes, other
studies, such as the recent work by Zhao et al. (2015),
use multilevel tower data for the same purpose.
Many factors exist, however, that may render in-

appropriate the use of MO theory (or, equivalently, the
existence of a logarithmic surface layer or ‘‘log layer’’) in
hurricane boundary layers, including, for example, radial
pressure balances near the core (Smith and Montgomery
2014). The current work computes dynamic and ther-
modynamic fluxes and flux coefficients based on mean
vertical profiles obtained from dropsondes and discusses
the sources of uncertainty and sensitivity in this pro-
cess. In addition, high-resolution large-eddy simulations,
where the turbulent boundary layer is not parameterized,
are used to test the ability of emulated dropsonde profiles
to recover known surface temperature and flux condi-
tions, thereby assessing the general ability of this method
near the core of a simulated tropical cyclone vortex. In
general, it appears that the estimates of CD are accurate
within roughly 50%, while estimates of CK are more
subject to uncertainty and are only accurate within
roughly 200%.

2. Dropsonde data

a. Method

1) THEORY

To estimate surface fluxes from tropical cyclones, data
from GPS dropsondes were obtained from the publicly
available datasets provided by theNational Oceanic and
Atmospheric Administration’s (NOAA) Hurricane
Research Division (HRD). In total, 2425 dropsonde
profiles from 37 different tropical cyclones (ranging in

intensity from tropical depression to category-5 hurri-
cane) were used to construct mean profiles of pressure,
temperature, humidity, and wind speed. Pressure, tem-
perature, and humidity are measured at a frequency of
2Hz, as were winds prior to 2010. Starting in 2010, a
redesigned sonde was introduced, and winds are now
measured at 4Hz; of the 2425 total sondes, 616 of them
were launched in 2010 or later and thus used the rede-
signed sonde. The sondes are advected horizontally and
vertically by the winds, while falling at a density-
dependent rate, which is approximately 10–12m s21 in
the lower troposphere. Based on this fall speed, data are
sampled every 5–6m vertically (;3m for wind speed for
the newer sondes). For this dataset, all sondes were
dropped by either Air Force C130 or NOAAP3 aircraft,
which typically fly at heights of 1.5–4 km. Therefore, the
sondes typically take about 3–6min to fall to the surface.
All sondes in this dataset were quality controlled by
HRD, using either HRD’s Editsonde software or the
National Center for Atmospheric Research’s Atmo-
spheric Sounding Processing Environment (ASPEN)
software. The stated instrumental accuracy of the GPS
dropsonde is 0.5mb (1mb = 1hPa), 0.28C, 2%, and
0.5m s21 for pressure, temperature, relative humidity,
and wind speed, respectively (Hock and Franklin 1999).
The underlying basis of MO theory (see, e.g., Monin

and Yaglom 1971) is that mean gradients of velocity or
other quantities (referred to here as an arbitrary scalar
f) are based solely on the surface flux of that quantity
and the height z above the surface (assumed to be much
larger than a typical roughness length: z ! z0). Thus, in
regions of the flow without the influence of small-scale
surface details, large-scale forcings, or elevated sources
or sinks, dimensional analysis predicts that the mean
velocity and scalar profiles observe a logarithmic
behavior:

hui5
u*
k

ln

!
z

z0

"
and (1)

hfi2f
0
5

f*
k

ln

!
z

zf

"
, (2)

where it is assumed that the surface conditions are
neutrally stable, the surface currents (i.e., the water
velocity u0 at the surface) are negligible,1 and that the
same scaling parameter k (the von Kármán constant;

1 If a surface current u0 was somehow known and not negligible,
Eq. (1) could be modified by subtracting u0 from the left-hand side.
Obtaining estimates for surface currents under sonde profiles is,
however, nearly impossible, and we assume that the wind speed is
everywhere much higher than u0.
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taken to be k 5 0.4 throughout) is valid for all mean
profiles. Note that, by taking k 5 0.4 for both the ve-
locity and scalar relationships, we have implicitly
assumed a turbulent Prandtl number equal to 1; that is,
we assume that the turbulent diffusivity of momentum
and passive scalars is identical. In general, the value may
be slightly less than unity (Monin andYaglom 1971), but
for the present purposes a value of 1 is chosen for sim-
plicity. The averages denoted by h"i indicate horizontal
or ensemble averages, z0 is the roughness length, which
is defined as the height at which the velocity profile
becomes equal to the (negligible) surface current, and zf
is analogously the height where f attains its surface
value of f0.
In Eq. (1), u* refers to the friction velocity, which is

defined based on the total surface stress tw:

ru2
*5 t

w
, (3)

where r is the air density. Likewise, in Eq. (2), f* is a
scale for f determined dimensionally from the surface
scalar flux Hf:

2ru*f*5H
f
, (4)

where Hf is the upward-directed surface flux of f. It is
assumed that the momentum flux tw and scalar flux Hf,
and thus u* and f*, are constant with height given the
above conditions. Typically, the constant surface layer
fluxes are understood as the turbulent fluxes rhu0w0i and
rhw0f0i in the absence of other mechanisms of vertical
momentum or scalar transfer (form stress due to waves,
elevated spray sources, etc.), where the primes indicate
perturbations from the mean.
Finally, the bulk parameterizations of interest relate

the surface fluxes tw and Hf to reference conditions,
which are often taken as the 10-m mean quantities U10

and f10:

t
w
5 ru2

*5 rC
D
U2

10 and (5)

H
f
52ru*f*5 rC

f
U10(f10 2f0) , (6)

where CD is the familiar drag coefficient and Cf is the
bulk flux coefficient for the scalar f.
Thus, as long as the aforementioned assumptions

hold—namely, negligible surface shape influences (i.e.,
can be captured solely through a roughness parameter-
ization), no large-scale influences, no elevated sources/
sinks, and neutral stability—one can, in theory, obtain
the quantities u* and f* by determining the slope of hui
and hfi plotted versus the logarithm of z (see Fig. 2).
From u* and f*, the surface fluxes tw and Hf can be
readily obtained from the first equality of Eqs. (5) and

(6), which, given the surface quantity f0, can also be
used to obtain CD and Cf via the second equality.
In the present study, the flux coefficients for mo-

mentum CD and enthalpy CK are of particular interest
and will be based on mean profiles of wind speed, po-
tential temperature, specific humidity, and moist en-
thalpy. Moist enthalpy is defined as the total specific
enthalpy of moist air:

k5 [(12 q)c
p,a 1qc

l
]u1L

y
q , (7)

where cp,a is the specific heat of dry air at constant
pressure, cl is the specific heat of liquid water, u is the
potential temperature, Ly is the latent heat of vapor-
ization, and q is the specific humidity. Note that the
potential temperature u is used in place of true tem-
perature T to eliminate effects of adiabatic expansion
with decreasing pressure. In this regard, the reference
pressure for converting temperature to potential tem-
perature is the pressure recorded by each individual
sonde at the lowest elevation and not the standard ref-
erence of 1000mb.
For determining CD, the flux profile strategy is rela-

tively straightforward, since surface currents are ne-
glected in comparison to the high-wind speeds. Thus,
the value of u* obtained from the profiles of hui can
readily be used to compute CD, as done in Powell et al.
(2003), Holthuijsen et al. (2012), Bi et al. (2015), and
Zhao et al. (2015) (again assuming conditions for MO
theory hold). For determining the thermodynamic flux
coefficients, however, knowledge of SST is required in
order to compute the surface conditions of tempera-
ture, moisture, and enthalpy [viz., f0 in Eq. (2)]. Esti-
mates of surface conditions will be discussed in the
following section.

2) ADJUSTABLE PARAMETERS

One of the primary goals of the current study is to
assess the accuracy with which the flux profile method
can be applied to dropsonde profiles obtained within
tropical cyclones, and this requires understanding first
how the quantities of interest are sensitive to the pa-
rameters of the method. What follows is therefore a
description of the procedure for applying the flux profile
method to dropsonde data (see Fig. 1 for a schematic).
First, for each sonde, vertically averaged values of the

velocity magnitude UPBL [where the subscript refers to
planetary boundary layer (PBL)] and enthalpy kPBL are
computed by averaging the wind speed and enthalpy
profiles below some user-specified height, defined here
as Hmean. Based on the value of UPBL, the sonde profile
is then placed into the appropriate wind speed bin; each
has a width DUbin 5 10ms21 (the value of DUbin does
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not change throughout this study)2. For purposes of
computing surface momentum fluxes and the corre-
sponding values ofCD, no further binning of the sonde is
required. For computing surface enthalpy fluxes, how-
ever, the thermodynamic profiles (temperature, mois-
ture, enthalpy) are further binned according to kPBL into
ranges of Dkbin, the width of which (measured in kilo-
joules per kilogram) must be chosen.
Once the velocity profiles have been binned according

to UPBL and the thermodynamic profiles have been
binned according to both UPBL and kPBL (thick lines in
Fig. 1), each individual sondemeasurement contained in
each profile is further binned into uniformly spaced
vertical height ranges Dzbin (thin lines in Fig. 1), where
the measurements within each height bin are collected
and averaged together. Note that the value of Dzbin
chosen must be large enough to provide enough samples
in each height bin for meaningful statistics but small
enough to provide sufficient resolution in the mean
vertical profile. What results is a single vertical profile of
mean velocity for each wind speed bin and a single mean
profile of temperature, moisture, and enthalpy for each
combined wind speed and enthalpy bin.

Finally, a choice is made on the height range over
which the fit to the mean profiles will be made, which
includes specifying a minimum and maximum elevation,
denoted zmin and zmax, respectively. Over this range, a
linear regression is then made, where only averages
representing the mean of at least 10 data points and
regressions over at least 7 vertical points are used. An
example is shown in Fig. 2 for a calculation of u* from
mean velocity profiles, where the wind speed bins have a
width of DUbin 5 10ms21, Hmean 5 500m, zmin 5 10m,
zmax 5 100m, and Dzbin 5 5m.
Finally, to compute CK, an estimate is needed of k0,

the surface value of enthalpy, in order to use Eq. (6).
This requires knowledge of SST immediately below the
mean profiles, which is not recorded by the dropsonde,
and therefore an estimate is needed. From the SST, the
surface enthalpy is computed by assuming saturation at
the SST using the Magnus relation (Dingman 2008):

e*5 6:11 exp

!
17:3SST

SST1 237:3

"
, (8)

where e* is the saturation vapor pressure in units of
millibars, and SST is provided in degrees Celsius.
As described in Richter and Stern (2014), we use as

an estimate for SST the 0.258 Reynolds daily SST
analysis (www.ncdc.noaa.gov/cdr/operationalcdrs.html;
Reynolds et al. 2007), linearly interpolated to the

FIG. 1. Schematic of the sonde measurement binning strategy. (left) Each mean velocity profile is binned into a range with width DUbin

(in this study, DUbin 5 10m s21) based on its value of UPBL, and each individual sonde measurement is binned into vertical ranges Dzbin.
(right) Thermodynamic profiles are binned into ranges of both DUbin and Dkbin based on values ofUPBL and kPBL, respectively, and again
each individual sonde measurement is binned into vertical ranges Dzbin.

2 For context, Powell et al. (2003) uses Hmean 5 500m and
DUbin 5 10m s21.
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location of the dropsonde using the nearest analysis in
time. Clearly, this method of determining SST immedi-
ately below each dropsonde can only be considered a
rough estimate. The analysis product is once-daily, so a
potentially significant time lag is present for each of the
sonde interpolations. Furthermore, this method almost
certainly does not adequately capture upper-ocean
mixing dynamics, where slow-moving, intense storms
upwell cold water to the surface (see, e.g., D’Asaro et al.
2013). In this case, values of SST may be systematically
overestimated under certain conditions, which could
lead to overestimates of the enthalpy flux coefficient,
since large fluxes would be incorrectly associated with
small air–sea temperature differences. While the SST
estimate is therefore likely amajor source of uncertainty
(to be evaluated in a later section), it is important to note
that this uncertainty only affects the coefficient CK and
not the slope k* (note that enthalpy k replacesf from the
general MO equations of the previous section). By re-
arranging Eq. (6), it is clear that the uncertainty of SST
and therefore CK is enhanced when k0 is close in mag-
nitude to k10 because the difference appears in the
denominator:

C
K
5

u*k*
U

10
(k

10
2 k

0
)
. (9)

Thus,asanadditionalparameter,wedefineDu05 ju102 SSTj,
which is the absolute magnitude of the difference be-
tween the 10-m potential temperature and the interpo-
lated value of SST. As done in Richter and Stern (2014)
to minimize the impact of the uncertainty of SST, we can

exclude sonde profiles with values of Du0 under a
specified value.

b. Parameter uncertainty

As outlined above, we identify six primary parameters
that we are free to choose when extracting momentum
and enthalpy flux quantities from dropsonde profiles
using the flux profile method: Hmean, Dkbin, zmin, zmax,
Dzbin, and Du0. The only requirement of these parame-
ters is that they be as consistent with MO theory as
possible: that is, quantities such as zmax must be within a
reasonable range of where one could expect MO theory
to hold in the hurricane boundary layer (if it holds at all).
Within this broad constraint, the specific values of these
parameters are therefore somewhat arbitrary, and for
the purposes of this study we choose them to span ranges
that are both realistic (e.g., Hmean no larger than 500m,
since it is unclear whether or not the boundary layer
extends beyond this range) and practical given the
available data. As an example, the parameter Dzbin
chosen should, in general, be large enough to contain a
sufficient number of samples but small enough to pro-
vide adequate vertical resolution. While this is nomi-
nally straightforward, the dropsondes used for this study
were upgraded in 2010, and wind speed collection fre-
quency transitioned from 2 to 4Hz. Therefore, the
choice of Dzbin, while somewhat arbitrary, may poten-
tially influence the mean velocity profiles in nonuniform
ways if held constant for all dropsondes. It is this type of
influence (as well as that resulting from the other five
parameters) that we aim to quantify. We note here that

FIG. 2. Semilogarithmic profiles of mean velocity hUi with elevation z for wind speed bins of width DUbin 5 10m s21, beginning with
20m s21. The horizontal error bars reflect two standard deviations in each direction, and the solid line is a linear regression with a slope of
k/u*, as noted in the figure. Profiles were created with all 2425 sonde profiles, binning by the mean velocity in the bottomHmean 5 500m.
(left) The small triangle illustrates the slope of the fitted line.
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the sensitivity to wind speed collection frequency
through Dzbin is ultimately found to be minor compared
to other sources of uncertainty.
To characterize the robustness of the flux profile

procedure, we systematically select the parameters and
monitor the variability of the predicted values of u*, k*,
CD, and CK. It is important to note that this test only
quantifies the internal sensitivity of this method to the
choice of parameters and not the uncertainty due to
external influences or measurement error. Before ad-
dressing these other sources of error in the following
section, it is important to first confirm that the method is
reliable in its reproducibility. Table 1 shows the values
chosen for each of the six method parameters; each of
the (3)4 3 (2)2 5 324 possible combinations are used to
create an ensemble of estimates of the flux quantities u*,
k*, CD, and CK. Again, the values are chosen to span
reasonable ranges for each, with the goal of character-
izing the sensitivity to freely chosen parameters and
bounding the variability in the estimated quantities.
Figure 3 plots the four flux quantities u*, k*, CD, and

CK versus the 10-m wind speed U10, as computed from
the linear regression of the mean velocity and enthalpy
profiles. In general, Fig. 3 has two features: 1) the re-
trieved values fall within the range of existing estimates,
with the exception of k* compared to Jeong et al. (2012)
[as explained in detail by Richter and Stern (2014)] and
2) the error due to sensitivity of method parameters
grows with wind speed, becoming very large at the
highest wind speed bin. In Figs. 3a and 3b, the computed
values of u* andCD, respectively, unsurprisingly lie very
close to the observations of Powell et al. (2003) because
we use the same method with a moderately expanded
dropsonde dataset. The trend ofCD shows a reduction at
wind speeds exceeding approximately 35m s21, which
corresponds to a deviation from linearity of u* versus
U10 [cf. Eq. (5)].
Figures 3c and 3d show that, while k* is relatively well

constrained within the same range as the data from Bell
et al. (2012) andZhang et al. (2008), the estimates forCK

show considerable variation as a result of changing the
procedural parameters. Even when ignoring the highest

wind speed bin, which exhibits an unacceptable vari-
ability, sensitivity ranges inCK at wind speeds exceeding
30ms21 can approach 200% of the mean predicted
value. Ranges of CD are considerably smaller.
It is therefore instructive to determine which model

parameters cause the variability seen in Fig. 3, particularly
in the case of CK. Figure 4 plots the fractions jCD,max 2
CD,minj/CD and jCK,max 2 CK,minj/CK versus U10, where
subscripts ‘‘min’’ and ‘‘max’’ refer to the minimum and
maximum values of CD and CK obtained when varying
each parameter while holding all others constant at their
baseline values (bold quantities in Table 1). Thus, the lines
in Fig. 4 show the range of variability as a fraction of the
mean flux coefficient due to each of the six parameters
(these are not merely the fractional contributions to the
total range of Fig. 3; i.e., they do not sum to 1).
Figure 4a shows that the variability in CD is primarily

due to choices of the minimum height zmin and the
height over which the binning of wind speed is computed
Hmean. The behavior in Fig. 4a is perhaps unsurprising,
given the question of the vertical extent or even the
existence of the logarithmic surface layer in the tropical
cyclone boundary layer. Note that CD does not depend
at all on Dkbin since velocity profiles are not binned by
enthalpy. Furthermore, note that sensitivity to Dzbin is
relatively small, which indicates that factors such as the
change in wind speed sampling frequency in 2010 (from
2 to 4Hz) are minor. Figure 4b, on the other hand,
shows a scattered response. With the exception of Dkbin,
variation in each of the parameters causes significant
variation in CK at some wind speed, although the ver-
tical extent of the enthalpy profiles, given byHmean, zmin,
and zmax, play a very large role at the highest wind
speeds. This indicates that the flux profile procedure for
obtaining the enthalpy flux coefficient is quite sensitive
to the parameters of the method, in particular the
specification of the logarithmic layer, and that this sen-
sitivity likely cannot be eliminated by adjustments or
improvements to the flux profile procedure. We again
emphasize that this only accounts for variability due to
method parameters; sensitivity due to external in-
fluences will be considered in the following section.
Overall, Fig. 4 suggests that in computing either CD or
CK, specification of the vertical extent of the surface
layer is generally the largest source of uncertainty. This
sensitivity indicates that external physical processes
(i.e., nonsurface-layer processes), such as large-scale
pressure gradients or convection, are playing a role
and potentially violating the assumptions behind MO
similarity. The fact that this sensitivity occurs within
Hmean 5 500m of the surface furthermore hints at the
characteristic height scales at which these external in-
fluences become significant factors.

TABLE 1. Values chosen for each of the six method parameters.
Each combination was used to create an ensemble of estimates of
u*, k*, CD, and CK. Bold quantities reflect the baseline case.

Parameter Values

Hmean 100, 250, 500m
Dkbin 5, 10, 20 kJ kg21

zmin 10, 30m
zmax 100, 150m
Dzbin 2, 5, 10m
Du0 0, 1, 2K
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c. Measurement and SST uncertainty

Aside from sensitivity to internal parameters of the
flux profile method, estimates of CD and CK are subject
to scatter present in the mean profiles of velocity,
moisture, and temperature as well. Furthermore, in the
case of enthalpy, the unknown value of SST, which has
been interpolated from 0.258 reanalysis data, remains a
large source of uncertainty as well. In this section a

Monte Carlo–based uncertainty quantification scheme
will be used to assess the reliability of the flux co-
efficient estimates based on the robustness of the
logarithmic fit through mean profile data as well as
variation in SST.
The horizontal error bars in Fig. 2 illustrate the spread

of wind speed data contained within each height and
wind speed bin; a similar picture exists for the mean
profiles of enthalpy as well (not shown here). Because

FIG. 3. (a) Friction velocity u*, (b) drag coefficientCD, (c) mean enthalpy profile slope k*, and (d) enthalpy flux coefficientCK obtained
using the flux profile method. The 10-m wind speed determined by the linear regression through the mean velocity and enthalpy profiles is
represented by U10. Points and error bars represent the mean and two standard deviations based on the 324-member ensemble with
varying combinations of method parameters. Included are existing observational estimates from the literature.

2672 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73



the flux profile method depends entirely on the linear
regression through the mean values in each height bin,
we first consider this regression subject to the 95%
confidence interval of each of these mean values. The
baseline parameters denoted in boldface in Table 1 are
used to perform the binning and fitting procedure.
Because the regression is performed only on the

mean values—of which there are only O(10) depending
on zmin, zmax, and Dzbin—and not the ‘‘cloud’’ of all
available velocity/enthalpy measurements, standard lin-
ear regression errors can be somewhat misleading. For
a given wind speed and enthalpy bin (i.e., a single
mean profile), we instead use the 95% confidence in-
terval of the mean value in each of the height bins
to generate a randomly sampled mean value at each
height, where the confidence interval is given by
(hxi2 1:96sx/

ffiffiffiffiffiffiffiffiffiffi
nsamp

p
, hxi1 1:96sx/

ffiffiffiffiffiffiffiffiffiffi
nsamp

p
), where hxi is

the mean value of either wind speed or enthalpy in a
particular height bin, sx is the standard deviation within
that bin, and nsamp is the number of samples in that bin.
For aMonte Carlo sample size of 10000, we then assume a
normal distribution of the mean value in each height bin
with a standard deviation of 1:96sx/

ffiffiffiffiffiffiffiffiffiffi
nsamp

p
, and compute

u* or k* (i.e., the slope) as the average of all 10 000
fitted slopes through the profiles of randomly sampled
mean values. This is illustrated in Fig. 5, which for a
single wind speed and enthalpy bin shows the mean
enthalpy points at each height z with their 95% con-
fidence interval, along with 100 of the 10 000 lines

fitted through randomly sampled mean values (gray
lines). Each of these individual gray lines has its own
slope k*, and the average value across the entire
Monte Carlo ensemble results is shown in the solid
black line.
Figure 6 shows the values of u* and k* as a function of

U10, where the error bars now refer to the 10% and 90%
quantiles of the 10 000-member ensemble. Compared to
Figs. 3a and 3c, the errors associated with the un-
certainty of the mean profiles are roughly the same as,
perhaps slightly smaller than, the uncertainty associated
with the parameters of the flux profile method. Again,
the uncertainty increases with increasing wind speed,
which results primarily from a decreased number of
observational samples and not necessarily a poorer fit.
The uncertainty range in Fig. 6 thus illustrates both the
spread in available data within each wind speed and
enthalpy bin, as well as the robustness of the linear re-
gression. It should be noted that Fig. 6 indicates thatMO
theory may perhaps hold to an appreciable degree
within tropical cyclones in regions where the wind speed
is less than roughly 50m s21, insofar as the existence of
logarithmic mean velocity and enthalpy profiles is proof
of this, contrary to Smith and Montgomery (2014). In
other words, we would expect the variability in slopes u*
and k* to be much larger if the mean velocity and en-
thalpy profiles were not generally logarithmic—a fea-
ture suggestive of (but not proof of) the applicability of
MO theory.

FIG. 4. Plots of (a) jCD,max 2 CD,minj/CD and (b) jCK,max 2 CK,minj/CK vs U10, where ‘‘max’’ and ‘‘min’’ refer to the maximum and
minimumobtained by varying each of the six parameters outlined in Table 1. See legend for the line associations. Gaps in various curves at
the highest wind speed result from a lack of data, where certain combinations of parameters do not meet the criteria for sample size.
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As noted above and in Richter and Stern (2014), u*
and k* are independent of surface conditions, and thus
k* is not influenced by uncertainty in SST. The flux co-
efficient CK, on the other hand, depends heavily on SST
through k0, as shown in Eq. (9). Therefore, for each of
the 10 000 Monte Carlo members used to compute the
ensemble ofmean profile regressions, the value of SST is
also sampled from a normal distribution whose mean
and standard deviation are equal to the mean and
standard deviation of all interpolated values of SST in
the corresponding wind speed and enthalpy bin. Note
that, because we are using the baseline case, sonde
profiles with Du0 , 2K are excluded from this Monte
Carlo procedure, and their inclusion in the analysis
would only work to increase uncertainty beyond what is
reported.
Figure 7 presents CD and CK versus U10, where again

the symbols refer to the mean of the 10 000-member
ensemble and the error bars reflect the 10% and 90%
quantile ranges. Included in each panel is a sample
probability density function (PDF) from the 40–50m s21

wind speed, 350–360kJ kg21 enthalpy bins. The esti-
mates ofCD are not in any way sensitive to SST, and thus
their error is only associated with the robustness of the
estimate of u*, as determined by the logarithmic fit. The
computed values lie very near those of Powell et al.

(2003) and Holthuijsen et al. (2012) because the same
procedure is used on nearly the same dataset, but more
importantly the uncertainty range is relatively narrow.
Aside from the highest wind speed, estimates of CD

obtained from mean velocity profiles appear to be ac-
curate within roughly 50%, taking into account both
procedural sensitivity (Fig. 3b) and profile variability
(Fig. 7a). The PDF included in the inset shows that the
distribution of CD due to variations of u* is indeed rel-
atively compact.
Estimates of CK, however, are again quite uncertain,

and the mean computed values are only accurate within
roughly 200%. This indicates that, even when excluding
sonde profiles where Du0 , 2K, stochastic variability in
SST as well as in the mean enthalpy profile leads to
relatively large uncertainty in the final value of CK—an
uncertainty on the same order as that resulting from the
parameter choices outlined in Table 1. The histogram
shown in the inset illustrates the heavy tail that occurs in
the PDF of CK, which is indicative of its larger
uncertainty.
Finally, we should note that additional sources of

uncertainty exist beyond those induced by procedural
parameters, mean profiles, and SST—particularly errors
associated with instrumentation. We implicitly assume
throughout this analysis that these errors are small
compared to those outlined above.

3. Simulation data

As an additional test for determining the reliability of
computing CD and CK using the flux profile method, we
use a high-resolution large-eddy simulation (LES) of an
idealized tropical cyclone to construct ‘‘virtual sondes’’
that are transported in time and space through the
simulated vortex. By taking a large number of virtual
sonde profiles and subjecting them to an identical pro-
cedure as used for the real dropsonde data, we can
compare the computed estimates of CD and CK against
the surface flux parameterizations that were specified in
the LES code. Moreover, a primary benefit of this test is
that one of the major sources of uncertainty, SST, is now
known exactly. It should be emphasized that this test is
meant to further determine the ability of the flux profile
method to recover prescribed surface flux parameters
from simulated sonde data and not to somehow improve
quantitative predictions of CD or CK.
We use the Cloud Model 1 (CM1; Bryan and Fritsch

2002; Bryan and Morrison 2012) to simulate an idealized
intense tropical cyclone. CM1 is a three-dimensional, non-
hydrostatic, fully compressible cloud model that has been
used to study a wide range of mesoscale and convective-
scale phenomena, including tropical cyclones (e.g., Davis

FIG. 5. Sample mean enthalpy profile for the 40–50m s21 wind
speed bin, 350–360 kJ kg21 enthalpy bin. Black symbols represent
mean enthalpy with 95% uncertainty range given by error bars. Solid
black line represents linear regression through mean enthalpy profile
using average value of k* (over all individual Monte Carlo samples).
Gray lines represent 100 of the 10 000 Monte Carlo samples using
randomly sampled mean values, given the 95% uncertainty range.
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2015; Bryan and Morrison 2012). CM1 uses a single do-
main and has grid stretching in both the vertical and
horizontal directions in order to maximize resolution in
an area of interest while minimizing computational ex-
pense. Tropical cyclones are synoptic-scale vortices, so to

contain the entire tropical cyclone within our domain, we
use a 1486km 3 1486km grid, with the model top at
25km. To explicitly resolvemost of the large eddies in the
boundary layer, we use a horizontal grid spacing of
62.5m. It is infeasible and unnecessary to use such fine

FIG. 7. Plots of (a)CD and (b)CK vsU10, where the symbols are the mean of a 10 000-member ensemble, where the SST and the average
velocity and enthalpy in each height bin are sampled from normal distributions. The error bars denote the 10% and 90% quantiles of the
ensemble. The insets provide probability density functions for representative bins: the 40–50m s21 wind speed bin and 350–360 kJ kg21

enthalpy bin.

FIG. 6. Plots of (a) u* and (b) k* vsU10, where the symbols refer to the average of the 10 000-memberMonte Carlo ensemble, where the
mean velocity and enthalpy values in each height bin are randomly sampled according to the 95% confidence interval. The error bars refer
to the 10% and 90% quantiles of the ensemble.
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resolution over the entire domain. Our area of interest is
the inner-core region, where the eyewall updraft and
strongest winds occur; this is also where most of the
sondes within our observational dataset are found.
Therefore, we use constant 62.5-mhorizontal grid spacing
in an 80km3 80km box centered on the vortex, which is
sufficient to cover the entire inner-core region.Outside of
this box, the horizontal grid spacing stretches to 15km by
the outer boundary. In the lowest 3km, vertical grid
spacing is constant at 31.25m (half of the horizontal) and
stretches to 500m near the model top.
We simulate our storm on an f plane, in a quiescent

environment (no mean flow), and over a homogeneous
and fixed SST of 288C. The initial atmospheric envi-
ronment is horizontally homogeneous, using theDunion
(2011) ‘‘moist tropical’’ mean sounding. We insert a
balanced, weak vortex into this environment, with initial
maximum winds of 20m s21. For microphysics, we use
the Morrison double-moment scheme (Bryan and
Morrison 2012), and we do not parameterize either ra-
diation or convection. Outside of the fine-mesh region,
turbulence is entirely unresolved and must be parame-
terized; for this, we use the turbulence scheme of Bryan
and Rotunno (2009). Inside of the fine-mesh region, we
turn this parameterization off and only use an LES
subgrid model based on that of Deardorff (1980).
Tropical cyclones typically intensify over a period of

several days, and even with the grid stretching in CM1, it
remains impractical to run our simulation for such a pe-
riod (there are 16643 16643 160 grid points). Therefore,
we first spin up a tropical cyclone in an axisymmetric
version ofCM1 and use the time-averagedoutput from 72
to 84h, when the tropical cyclone is approximately cate-
gory 5, to initialize the LES. We then integrate the
LES for only 2h. Though this may seem short, three-
dimensional turbulence develops within only 10min, and
the turbulence is statistically steady after an hour (not
shown). In a future publication, we will present this and
other such simulations in much greater detail.
To emulate dropsondes within the simulation, we cal-

culate parcel trajectories that we modify by adding a fall
speed.Weuse the exact samedensity-dependent fall speed
formulation that is used in ASPEN for the observed
sondes. These virtual dropsonde trajectories are integrated
within the model using a second-order Runge–Kutta
scheme. For the results presented below, we released
sondes in a 20km 3 20km box that covers the southwest
quadrant of the simulated tropical cyclone (TC). Sondes
are placed at 62.5-m intervals horizontally (i.e., at every
model grid point), and in total there are 103041 virtual
sondes. The initial height of all sondes is 2500m, which is a
typical release height for observed sondes. Recall that the
observed sondes sample two or four times per second; in

order to minimize storage space, we output virtual sonde
data only every 3 s. As each virtual sonde samples slightly
different heights because of differences in vertical veloci-
ties (of the air) and as we are bin averaging the profiles,
this difference in sampling rate between the observed and
virtual sondes should not substantially affect our results.
The sondes are all released at t5 2h, and their trajectories
are integrated for 10min, which is enough time for almost
all of the sondes to fall to the surface.
For estimating CD and CK from the virtual sonde pro-

files, the exact same procedure outlined in section 2a is
used, but now the parameter Du0 is not needed because
there is only a single known value of SST. Once again the
reliability of this method is evaluated based on the sensi-
tivity of CD and CK to method parameters. Table 2 is
analogous to Table 1 and shows the values chosen for
Hmean,Dkbin, zmin, zmax, andDzbin used in the virtual sonde
analysis. Note that zmin andDkbin both deviate slightly from
the previous case because of restrictions of the computa-
tional grid and choice of boundary conditions, respectively.
Figure 8 showsCD andCK computed from the 103 041

virtual sonde profiles from a single storm using the flux
profile method. As with the real sondes, internal vari-
ability of CK due to method parameters is much larger
than that associated withCD. Predictions of bothCD and
CK lie in the general proximity of the prescribed values
(given by the solid blue lines), particularly at the highest
wind speeds. Between wind speeds of 20 and 40m s21,
however, bothCD andCK underpredict the true value by
over 100% (i.e., by a factor of 2).
While this test is of course limited by the accuracy of

the turbulence generated by the simulation, it once
again confirms that the flux profile method is able to
provide estimates of flux coefficients that lie in the cor-
rect general range but that are limited in their quanti-
tative calculation. It is worthwhile to caution that purely
numerical aspects, such as the vertical grid resolution
and details of the LES subgrid model, can and do in-
fluence the calculation of CD and CK using the virtual
sonde approach (not shown). While these factors are
unavoidable, we argue that they are small enough that
valuable insight can be gained into the validity and ro-
bustness of the flux profile method.

TABLE 2. Values chosen for each of the method parameters for
the virtual sonde experiments. Each combination was used to
create an ensemble of estimates of CD and CK.

Parameter Values

Hmean 100, 250, 500m
Dkbin 2, 5, 10 kJ kg21

zmin 20, 50m
zmax 100, 150m
Dzbin 2, 5, 10m
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4. Discussion

Given the above results for both the real and simu-
lated sonde profiles, two specific points merit further
discussion. The first is regarding the agreement (or lack
thereof) between the virtual sonde predictions of the
surface flux coefficients and the prescribed values shown
in Fig. 8. The other is regarding the relationship between
CK and its sensible and latent heat counterparts CH and
CE, since these are typically the values of practical in-
terest in numerical weather prediction models.

a. Radius dependence

In section 3, virtual sonde trajectories in a turbulence-
resolving LES were used to test the flux profile method
under conditions where both the SST and the actual
surface flux parameterizations are known exactly.
Figure 8 indicated that the mean values obtained by the
flux profile method agreed qualitatively with real sonde
data but underestimated the prescribed values some-
what, particularly at lower wind speeds.
Under conditions where the mean profiles of various

quantities are not determined exclusively by the surface
flux and the height above the surface (i.e., the underlying
basis of MO theory), the existence of a logarithmic layer
may be called into question, particularly one that ex-
tends an appreciable distance upward from the ocean
surface. One such violation is discussed in detail by
Smith and Montgomery (2014), who argue that radial

pressure balances near the eye of the tropical cyclone
violate the underlying assumptions behind the existence
of a logarithmic velocity profile.
We therefore perform a simple test to determine

what, if any, sensitivity the flux profile predictions of CD

and CK have to rsonde, the distance from the simulated
storm center at which the virtual sonde is released. In
Fig. 9, two curves of CD and CK are provided: one using
sondes in the range 0, rsonde, 10km and the other only
using sondes in the range 10 , rsonde , 20km. For this
simulated storm, the radius of maximum wind near the
surface is approximately 12 km.
It is clear from Fig. 9 that proximity to the storm

center indeed significantly changes the prediction of the
surface flux coefficients via the flux profile method. For
the range 0 , rsonde , 10km, both CD and CK severely
underpredict the prescribed values, while for the range
10 , rsonde , 20km the estimated mean values are in
close agreement with the prescribed values. In this case,
however (Figs. 9c,d), a large degree of uncertainty
continues to exist, particularly for CK, as given by the
variability resulting from changing the parameters of the
method (see discussion in section 3).
Figure 9 would therefore suggest that the flux profile

method is inappropriate in regions near the tropical
cyclone eye and could possibly lead to underpredictions
of CD and CK if these sonde profiles are included in the
flux profile analysis, perhaps for reasons given by Smith
and Montgomery (2014). Another possibility is that we

FIG. 8. Plots of (a) CD and (b) CK vs U10 as estimated from the virtual sonde data. The solid blue lines correspond to the prescribed
surface flux coefficients in the code. The error bars reflect two standard deviations from the mean of the (3)3 3 (2)2 5 108-member
ensemble based on the combinations of parameters in Table 2.
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have assumed neutral stability throughout our analysis,
which may corrupt the use of the flux profile method in
regions near the storm center that are nearly completely
dominated by convection. Finally, we note that we have
chosen not to restrict the actual sonde data of section 2
in a similar way because of the large degree of un-
certainty associated with the storm center and radius of
maximumwind at the time of each individual dropsonde
launch. We fear that incompatible sonde exclusions
would be made between storms of varying size without

reliable, time-resolved information regarding the storm
center and radius of maximum wind.

b. Sensible and latent heat fluxes

A common assumption in boundary layer flux pa-
rameterizations is that the flux coefficients for sensible
heat, moisture, and enthalpy are the same; that is, CH 5
CE5CK, where Eq. (6) is invoked usingf5 cp,au, q, and
k, respectively. Past studies that compute fluxes directly
(i.e., using eddy covariance) have shown that, within

FIG. 9. Plots of (a) CD and (b) CK vs U10, as estimated from the virtual sonde data, using only sondes launched in the range 0 , rsonde ,
10 km. (c),(d) As in (a),(b), but using only sondes launched in the range 10 , rsonde , 20 km.
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uncertainty, this relationship holds true (DeCosmo et al.
1996; Drennan et al. 2007; Zhang et al. 2008). In the
current context, we noted above that one of the re-
quirements of MO theory is that there exist no elevated
sources of the quantity of interest, including those due to
evaporation/condensation. Thus, instead of computing
fluxes of heat and moisture separately (which are po-
tentially influenced by evaporation and condensation of
rain and/or spray), we have focused so far primarily on
the flux of moist enthalpy k, since it is conserved during
phase transitions and therefore does not violate this MO
criterion.
It is worthwhile to comment, however, on the pre-

dictions of latent and sensible heat flux as computed by
the flux profile method using the observational (i.e., not
the virtual) dropsonde dataset. The procedure outlined
in section 2 can be used on mean profiles of temperature
and moisture, in conjunction with Eq. (6), to compute
estimates of surface fluxes of sensible and latent heat
over all 37 tropical cyclones:

H
S
52rc

p,au*u* (10)

and

H
L
52r(L

y
1 c

p,luSST)u*q*, (11)

respectively, where u* and q* are computed via the
slopes of the mean temperature and moisture profiles,

and uSST is a mean SST, which we have crudely esti-
mated to be 300K (this term is overwhelmed by the la-
tent heat of vaporization).
Figure 10a shows HS and HL as a function of U10,

along with the enthalpy flux as computed by HK 5
2ru*k* for the real sonde data. Also shown is the
sum ofHS andHL, which should ideally sum to exactly
HK. Discrepancies between HK and HS 1 HL are
likely due to violations of MO assumptions induced
by evaporating/condensing rainfall or spray within
the lower boundary layer, thus making neither temper-
ature nor moisture a conserved quantity. Figure 10a
shows a close agreement between the two, suggesting
that nonconservative effects may be small. Figure 10a
illustrates that latent heat overwhelmingly dominates the
total enthalpy flux, somewhat unsurprisingly, and that
the sensible heat flux, as computed by this method, is
slightly negative.
If the flux coefficients CH and CE are computed,

however, (Fig. 10b), the values of CH are actually neg-
ative, suggesting that sensible heat is being transported
countergradient according to Eq. (6). This is likely un-
physical and results from a combination of small-in-
magnitude sensible heat fluxes and highly uncertain
values of SST. The values of CE, on the other hand, are
quite similar to the values of CK. Therefore, in this case,
the relationship CE 5 CK seems plausible (within un-
certainty) but cannot be confirmed or refuted for CH

FIG. 10. (a) The fluxes of enthalpy, sensible heat, and latent heat as computed byEq. (6). The sumof the latent and sensible heat is shown
as well, which should ideally match the enthalpy flux as computed via k* and u*, given perfect adherence to MO theory. (b) The sensible
heat and water vapor flux coefficients CH and CE, respectively, as a function of U10.
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because of what is essentially a large signal-to-noise
ratio of sensible heat flux to unknown SST values.

5. Conclusions

Dropsonde data recorded across 37 different tropical
cyclones were used to construct mean profiles of wind
speed and enthalpy in order to use MO theory and the
flux profile method to estimate surface fluxes and surface
flux coefficients. Of primary interest in this study is the
reliability of this method when subjected to variability in
the internal parameters of the method (i.e., binning pro-
cedures, threshold values, etc.), scatter among individual
profiles and the robustness of the linear regression through
theirmean, anduncertainty in theSSTestimate. In addition,
a high-resolution large-eddy simulation of an idealized
tropical cyclone vortex was used to further validate this
procedure by constructing simulated sonde profiles from
the simulation and performing an identical retrieval of
surface flux coefficients. In this case, the value of SST is
knownexactly, and the estimated values ofCD andCKwere
compared to the prescribed values in the numerical code.
Overall, the results show that estimates of CD using

dropsonde data, as done by Powell et al. (2003) and
Holthuijsen et al. (2012), are accurate to within ap-
proximately 50% up to wind speeds of roughly 50ms21.
This includes the sensitivity of this method to regression
procedures as well as its ability to quantitatively recover
prescribed surface values in the numerical simulations.
While a relative error of 50% could be considered
somewhat large, it does not preclude one from using the
flux profile method estimates of CD to confirm qualita-
tive conclusions about the behavior of the drag co-
efficient at high winds.
For computing CK, on the other hand, this analysis

shows that, while the estimated values lie in the same
general range as others in the literature (Zhang et al.
2008; Bell et al. 2012; Jeong et al. 2012), variability of the
estimated values is relatively high, restricting a quanti-
tative prediction to only within 200%. The uncertainty
in SST is a major source of this variability, but inherent
sensitivity in the binning procedure leads to large spread
as well, limiting the ability of the flux profile method to
predict surface flux coefficients even if SST were
somehow known. Beyond this, violations of MO theory,
particularly near the tropical cyclone eye, potentially
corrupt the predictions of both CD and CK; likewise,
other factors, such as neglecting surface currents in the
computation of CD, may impact the accuracy as well.
The flux profile technique thus provides a means of

roughly estimating quantities such as CD and CK, how-
ever with limited quantitative skill. While it may guide
qualitative considerations, such as whether or not the

value of CD saturates (Powell et al. 2003) or whether or
not spray influences enthalpy fluxes (Richter and Stern
2014), its use as a tool for refining values of CD or CK is
not recommended. If one were interested in the surface
fluxes themselves (as opposed to the flux coefficients),
knowledge of SST and other surface conditions is not
required, and predictions via the flux profile method are
quite robust (assuming conditions for MO theory hold);
however, these quantities are of much less practical use
for universal surface flux parameterizations.
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